

M. Sc. (Sem. III) (CBCS) Examination

May - 2023 MS-302 : Statistics (Industrial Statistics) Faculty Code: 003 Subject Code: 1173002 Time: $2\frac{1}{2}$ Hours / Total Marks: 70 **Instructions**: (1) Attempt all questions. (2) Each question carries equal marks. 1 Answer the following questions: (any **seven**) 14 (1) Control chart for defects ks known as chart. (2) Chart for fraction is define as . (3) OC curve means . (4) Write down the all-control limits for R charts. Write control limits for the \overline{R} chart. (5) (6) Upper control limit of P chart is . (7) What is the lower control limit for EWMA chart? (8) Pareto chart are often used in both the measure and analyze steps of _____. (9) Which chart is widely used in non-manufacturing quality improvement methods? (10) \overline{X} and R chart are known as chart for . 2 Answer the following questions: (any **two**) 14 Sixteen boxes of electric switches each containing 20 switches were randomly selected from a lot of switch boxes

HAK-003-1173002]

1

of defects per box was as follow:

and inspected for the number of defects per box. The number

[Contd...

Box No.	No. of Defects	Box No.	No. of Defects
1	12	9	11
2	5	10	12
3	9	11	16
4	14	12	13
5	18	13	19
6	26	14	18
7	8	15	14
8	6	16	21

Calculate limits of C-chart and draw conclusion.

- (2) Explain Process Capability Index and Operating characteristic Curve
- (3) Explain Dodge Roming Sampling Plans.
- 3 Answer the following questions:

14

(1) Fraction nonconforming is defined as the ratio of the no. of nonconforming item in a population to the total no. of item in that population.

Sample no.	no. of defective (Di)	Sample no.	no. of defective (Di)
1	3	11	2
2	2	12	4
3	4	13	1
4	2	14	3
5	5	15	6
6	2	16	0
7	1	17	1
8	2	18	2
9	0	19	3
10	5	20	2

Calculate control limits and draw conclusion.

(2) Explain choice between attributes and variable control charts.

OR

3 Answer the following questions:

14

- (1) Explain the exponentially weighted moving average control chart for monitoring the process mean.
- (2) Explain Pareto chart in statistical quality control.

- 4 Answer the following questions: (any **two**)
 - (1) Explain Hotelling T² control chart.
 - (2) When to use X-Bar and R charts. Give real life example.
 - (3) Define defect concentration diagram and write its uses.
- 5 Answer the following questions: (any **two**)
 - (1) Explain the sample mean vector and covariance matrix of the multivariate normal distribution.
 - (2) Explain control charts for non-conforming and fraction.
 - (3) What is the role of attribute charts in the manufacturing organization? Give an appropriate example.
 - (4) Explain moving average and exponentially weighted moving average charts.

14

14